SVKM's NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme: B.Tech/ MBA Tech (IT)

Year: II

Semester: III

Academic Year: 2019-20

Subject: Signals and Systems

Date: 14 November 2019-

100

TI

TR.

U

1

10

11

I

Marks: 100

Time: 2.00 pm - 5.00 pm -

Durations: 3 (Hrs)
No. of Pages: 2

Final Examination (2019-20)

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

1) Question No. 1 is compulsory.

- 2) Out of remaining questions, attempt any 4 questions.
- 3) In all 5 questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right hand side indicate full marks.
- 7) Assume suitable data if necessary.

	Α.	Classify discrete time systems.	[5]
01	В.	State and prove the Time shifting property of discrete time Fourier series.	[5]
Q1.	C.	Determine Fourier transform of discrete time signal $x(n) = (a)^n u(n)$.	[5]
	D.	What is Region of Convergence (ROC) in Z-Transform? Illustrate any 4 properties of ROC of Z-Transform.	[5]
	A.	Classify Signals. A continuous time signal is defined as	[10]
Q2.		$x(t) = t ; 0 \le t \le 3$	
		= 0; t > 3 Sketch the waveform of x(-t) and x(2-t).	
	B.I	Verify whether the following continuous time signals are periodic. If periodic, find the fundamental period. (1) $x(t) = 2 \cos \frac{t}{4}$ (2) $x(t) = 3 \cos(5t + \frac{\pi}{6})$	[5]
	В.П	A discrete time system can be (1) static or dynamic (2) causal or non-causal (3) linear or non-linear (4) time variant or time invariant (5) stable or unstable. Examine the following system with respect to the above properties: $y(n)=5$ n $x(n)$	[5]
Q3.	A	Determine the response of LTI system whose input $x(n)$ and impulse response $h(n)$ are given by $x(n) = \{1,2,3,1\}$ and $h(n) = \{1,2,1,-1\}$.	[10]
	В.	Determine the impulse response for the cascade of two LTI systems having impulse	[10]

	1 , %	responses, $h_1(n) = (1/2)^n u(n)$ and $h_2(n) = (1/4)^n u(n)$	
	A.I	State & prove properties of Linear convolution.	[5]
Q4.			
Q4.	A.II	Find the Fourier series representation of discrete time signal $x(n) = \sin(\frac{\pi}{2}n + \phi)$	[5]
	В.	Determine the Fourier series of the waveform shown in figure $ \begin{array}{c c} & X(t) \\ \hline & -T \\ \hline & -T \\ \hline & -A \end{array} $	[10]
0.5	Α.	State and prove the Time reversal and Time scaling property of discrete time Fourier series.	[10]
Q5.	B.I	Compare continuous time and discrete time Fourier series.	[5]
	B.II	Determine the Fourier transform of discrete time signal $x(n) = \{1,1,1\}$	[5]
	Α.	State and prove the frequency shifting and frequency differentiation property of discrete time Fourier transform.	[10]
Q6.	B.I	Determine the Fourier transform of the periodic signal x(t) shown in figure below	[5]
	B.II	Determine Z-Transform of discrete time signal $x(n) = n$ (a) ⁿ $u(n)$. Also draw ROC.	[5]
	A.	State & prove the differentiation property of Z-Transform. Determine the inverse	[10]
Q7.		Z-Transform of X(z) = $\frac{(8z-19)}{(z-2)(z-3)}$	
4.	В.	The state space representation of discrete time system is given by,	[10]
		$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 3 \end{bmatrix}, D = \begin{bmatrix} 3 \end{bmatrix}$	
		Derive the transfer function of the system?	