SVKM's NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme: B.Tech (Computer) Year: IV Semester: VII

Academic Year: 2019-20

Subject: Distributed Computing

Marks: 70

Date: 06 November 2019

Time: 2.00 pm - 5.00 pm

Durations: 3 (hrs)
No. of Pages:

Final Examination (2019-20)/ Re-Examination (2018-19)

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

- 1) Question No. 1 is compulsory.
- 2) Out of remaining questions, attempt any 4 questions.
- 3) In all 5 questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right hand side indicate full marks.
- 7) Assume suitable data if necessary.

Q.1			
	(a)	What is the role of middleware in distributed system?	3
	(b)	What is RMI? Draw the architectural diagram of RMI.	4
	(c) (d)	How Lamport clock's is implemented in distributed system? Describe Deadlock prevention in distributed system.	4
Q.2	(a)	Explain Google File System in detail.	7
	(b)	What is Process resilience? Explain various design issue of process resilience.	7
Q.3	(a)	What is Flat Naming System? State various solution for flat naming system in detail.	7
	(b)	What are the basic RPC operation? Explain the steps in RPC with neat diagram.	7
Q.4	(a)	Explain Bully and Ring algorithm with neat diagram.	7
	(b)	Explain Message Queuing System. What is the significance of message broker in message queuing system?	7
Q.5	(a)	Explain Data Centric Consistency models. Give the difference between client centric consistency model and data centric consistency model.	7
œ	(b)	What is Process Migration? Explain the various steps of process migration with neat diagram.	7
Q.6	(a)	Explain Two Phase Commit protocol for the recovery of distributed database.	7
	(b)	What is the need for replication? Explain the tradeoffs in distributing content for managing replicas in distributed system.	7
0.7		Write short note:	
Q.7	(a)	Design issues in real time distributed system	4
	(b)	File Caching in distributed file system	4
	(c)	Centralized, Decentralized and Hybrid architecture	3
	(d)	Centralized and Distributed mutual exclusion algorithm	3