SVKM's NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme: B.Tech (Computer)

Year: IV

Semester: VII

Academic Year: 2019-20

Subject: Data Warehousing and Mining

Date: 08 November 2019

Marks: 70

Time: 2.00 pm - 5.00 pm

14

14

14

14

Durations: 3 (hrs)

No. of Pages: _02_

Final Examination (2019-20)/ Re-Examination (2018-19)

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

1) Question No. 1 is compulsory.

2) Out of remaining 6 questions, attempt any 4 questions.

3) In all 5 questions to be attempted.

4) All questions carry equal marks.

5) Answer to each new question to be started on a fresh page.

6) Figures in brackets on the right hand side indicate full marks.

7) Assume suitable data if necessary.

Q.1	a) b)	Compare Agglomerative and Divisive clustering methods. Compare Data warehouse with Data Marts.	[3] [4]
	c) d)	Why ER model is not suitable for Data Warehouse? Explain any one method of partitional clustering with suitable example.	[3] [4]
Q.2	a)	Explain bottom up architecture of a data warehouse with neat diagram and with its advantages.	[7]
	b)	In real world data, tuples with missing values and noisy data are common occurrence. Describe various methods for handling this problem.	[7]
Q.3	a)	What are aggregate fact tables? With suitable examples, explain	[7]
	b)	multi-way aggregate fact tables. Explain naïve Bayes algorithm for classification with its steps. Also list any three advantages of Naïve Bayes algorithm over KNN.	[7]
Q.4	a)	What do you mean by Data transformation in ETL? Explain tasks involved in data transformation.	[7]
	b)	Use complete linkage algorithm to find the clusters from the	[7]
		following dataset. Also draw the dendogram for same.	L 1
		X 4 8 15 24 24	
		Y 4 4 8 4 12	

Q.5	a)	What is OLAP? With neat diagrams explain any three OLAP models in detail.	[7]	14
	b)	Explain any six metrics for evaluating classifier performance using the Confusion matrix.	[7]	
Q.6	a) b)	What is data mining? Discuss major issues in data mining. A database has five transactions. Let minimum support	[7] [7]	14
		count=2, and minimum confidence is 80%. Find all frequent item sets using Apriori algorithm.		
		TID Items		
		T1 I1,I2,I5		
		T2 I2,I4		
		T3 12,13		
		T4 I1,I2,I4		
		T5 I1,I3		
		T6 I2,I3		
		T7 I1,I3		
		T8 I1,I2,I3,I5		
		T9 I1,I2,I3		
0.7	a)	Metadata acts as nerve center of a data warehouse. Justify.	[4]	14
Q.7	a) b)	Explain Clustering for large datasets using DBSCAN algorithm	[4]	
	c)	In brief, discuss Trends in data mining.	[3]	
	d)	Explain with an example type1, type2 and type3 changes in dimension table.	[3]	