SVKM's NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING/ SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

rogramme: B.Tech/ MBA Tech (All Streams)

Year: I

Semester:

Academic Year: 2019-20

lubject: Mathematics-I

Marks: 100

ate: 06 November 2019

Time: 10.00 am - 1.00 pm

Durations: 3

Hrs)

Final Examination (2019-20) / Re Examination (2018-19)

.B.:-

- 1. Question 1 compulsory
- 2. Attempt any four from the remaining questions.
- 3. Figures to the right indicate full marks.

OMPULSORY

a i $\Gamma(n+1) = n!$ can be used when ___

2

- 1. n is any integer
- 2. n is a positive integer
- 3. n is a negative integer
- 4. n is any real number

Value of

2

$$\lim_{x \to 1} \frac{x^x - x}{x - 1 - \log x}$$

- 1.2
- 2.4

- 3.0
- 4.1
- If $x = r \cos \theta$, $y = r \sin \theta$ then $\frac{\partial r}{\partial x} =$ iii
- a) $\frac{x}{r}$ b) $\frac{r}{x}$ c) $\frac{1}{\cos\theta}$
- d) none of these

- Which of the following is the basis of subspace of the given vector space $\{(x,y,z)\in R^3/2x-3y+5z=0\}\in R^3$ iv $.\ i.[1,\,1,\,-1]\ ii.[1,\,-1,\,1]\ iii.[-1,\,1,\,1]\ iv.[1,\,1,\,1]$
- If p=2, then rank of matrix ٧

$$A = \left[\begin{array}{ccc} p & p & 2 \\ 2 & p & p \\ p & 2 & p \end{array} \right]$$

is

- 1.1
- 2.2
- 3.3
- 4.0

Match the following

The value of	$a = 8\sqrt{\pi}$
	15

6

6

8

6

$\lim_{x \to 0} \frac{\log \sin x}{\cot x}$	
The value of $\Gamma\left(-5/2 ight)$	b. Grad F = 0
The Eigen values of A are $egin{bmatrix} 1 & 0 \ 2 & 4 \end{bmatrix}$	c. (1,0,0),(0,1,0)
Let T: V_3 à V_3 be linear map defined by T(x_1 , x_2 , x_3) =(x_1 , x_2 ,0), Range of T is	d. 0
The vector field function F is called solenoidal if	e. 9, 15

PTIONAL

$$\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3} = 1$$

Find a and b if

Find the volume of largest possible right circular cylinder that can be inscribed in a sphere of radius a.

Prove that $\frac{b-a}{1+b^2}<\tan^{-1}b-\tan^{-1}a<\frac{b-a}{1+a^2}$ Hence deduce the

$$\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\left(\frac{4}{3}\right) < \frac{\pi}{4} + \frac{3}{25}$$

If

$$z = x^{2} \tan^{-1} \left(\frac{y}{x}\right) - y^{2} \tan^{-1} \left(\frac{x}{y}\right)$$

Prove that

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = \frac{x^2 - y^2}{x^2 + y^2}$$

3 b Determine a b and c such that

$$\overline{F} = (x+2y+az)\,\hat{i} + (bx-3y-z)\,\hat{j} + (4x+cy+2z)\,\hat{k}$$

is irrotational.

3 d Find the equation of tangent plane and normal line to the surface at (0,0,1)

$$z = e^{-(x^2 + y^2)}$$

- 4 a Let T: $R^2 \rightarrow R^2$ be a linear map such that T(4,1) = (1,1), T(1,1) = (3, -2).

 Compute T(1,0)
- 4 b Find the range and kernel of

$$T\colon R^2 \to R^3$$

defined by

$$T(x,y) = (x - y, x + y, y)$$

4 c Show that the set V of positive real numbers with following operations, is a vector space.

$$x + y = xy$$
 $kx = x^k$

where x and y are real numbers and k is any scalar

5 a Show that the following matrix is diagonalizable. Also find the diagonal matrix and transforming matrix,

$$A = \left[\begin{array}{rrr} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{array} \right]$$

5 b Reduce the matrix to row-echelon form and find its rank

8

6

8

8

$$\begin{bmatrix} 1 & 2 & 3 & -1 \\ -2 & -1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix},$$
 hence

Find the characteristic equation of the symmetric matrix evaluate the matrix A^8 - $5A^7$ + $7A^6$ - $3A^5$ + A^4 - $5A^3$ + $8A^2$ -2A+I

Determine the volume of solid generated by revolving the area enclosed by the loop of the curve $y^4 = x (4 - x)$ about the x^2 axis

$$\int_{-\pi/4}^{\pi/4} (\sin\theta + \cos\theta)^{1/3} d\theta$$

Evaluate

1

$$\int_{2}^{\infty} \frac{1}{(x-1)(x^2+1)} dx$$

Evaluate

Find a point on the plane
$$x+2y+3z = 13$$
 nearest to the point $(1, 1, 1)$ using 6 the method of Lagrange multipliers.

Verify Rank- nullity theorem for the linear transformation

$$T: M_{22} \rightarrow M_{22}$$

defined by

$$T\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a-b & 0 \\ 0 & c-d \end{array}\right)$$

Find the characteristic equation of the matrix *A* given below and hence it's inverse & the matrix represented by

$$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I$$

where

$$A = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{array} \right]$$