SVKM's NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme: B. Tech (All Streams)

Year: I

Semester: I

Academic Year: 2019-20

Subject: Engineering Mathematics - I

Marks: 70

Date: 06 November 2019

Time: 10.00 am - 1.00 pm

Durations: 3 (hrs) No. of Pages: _oZ_

Re-Examination (2016-17/2017-18)

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

- 1) Question No. 1 is compulsory.
- 2) Out of remaining questions, attempt any 4 questions.
- 3) In all ___5_ questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right hand side indicate full marks.
- 7) Assume suitable data if necessary.

Q.1 (a) Find the general value of
$$\log(1+i) + \log(1-i)$$
. (4M)

(b) Verify Rolle's Theorem for
$$f(x) = x^2$$
; $[-1,1]$. (3M)

(b) Verify Rolle's Theorem for
$$f(x) = x^2$$
; $[-1,1]$. (3M)
(c) If $u = \log \left[\frac{x^3 + y^3}{x^2 + y^2} \right]$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$. (4M)

(d) Find the unit vector tangent to the space curve
$$x = t$$
, $y = t^2$, $z = t^3$ at $t = 1$. (3M)

Q.2 (a) Express
$$\sin(6\theta)$$
 in terms of powers of $\sin\theta$ and $\cos\theta$. (4M)

(b) If
$$5 \sinh x - \cosh x = 5$$
, find $\tanh x$. (5M)

(c) If
$$2 \cosh \left(\alpha + i \frac{\pi}{4}\right) = x + iy$$
, prove that $x^2 - y^2 = 2$. (5M)

Q.3 (a) Expand
$$\sqrt{x}$$
 using Taylor's theorem, hence find $\sqrt{25.15}$. (5M)

(b) Verify LMVT for
$$f(x) = \log_e x$$
 in $[1, e]$. (5M)

(c) Evaluate
$$\lim_{x \to 1} (1 - x) \cdot \tan\left(\frac{\pi x}{2}\right)$$
. (4M)

Q.4 (a) If
$$u = 1/r$$
, $r = \sqrt{x^2 + y^2 + z^2}$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$. (5M)

(b) Find the maxima and minima of
$$f = x^3 + y^3 - 3axy$$
; where $a > 0$. (5M)

(c) If
$$u = x^3 \sin^{-1}\left(\frac{y}{x}\right) + x^4 \tan^{-1}\left(\frac{y}{x}\right)$$
, find the value of (4M)

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}.$$

Q.5 If
$$z = \phi(x, y)$$
; $x = uv$, $y = u/v$, prove that $\frac{\partial z}{\partial x} = \frac{1}{2v} \cdot \frac{\partial z}{\partial u} + \frac{1}{2u} \cdot \frac{\partial z}{\partial v}$ and (5M)

(a)
$$\frac{\partial z}{\partial y} = \frac{v}{2} \cdot \frac{\partial z}{\partial u} - \frac{v^2}{2u} \cdot \frac{\partial z}{\partial v}$$
.

(5M) If
$$u = \sin^{-1} \sqrt{x^2 + y^2}$$
, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

(5M)

Estimate the maximum error in $f(x,y) = x^2 + y^2 + xy$ at the point x = 2, y = 3 if

maximum errors \pm 0.01 and \pm 0.02 are made in x and y respectively.

Q.6 Determine the constants a, b, c so that
$$\vec{F} = (x + 2y + az)\hat{\imath} + (bx - 3y - z)\hat{\jmath} + (5M)$$

Determine the constants
$$\hat{a}$$
, \hat{b} , \hat{c} so that \hat{f} (\hat{c}) Determine the constants \hat{a} , \hat{b} , \hat{c} so that \hat{f} (\hat{c}) Determine the constants \hat{a} , \hat{b} , \hat{c} so that \hat{f} (\hat{c}) and \hat{c} so that \hat{f} (\hat{c}) and \hat{c} and \hat{c} (\hat{c}) and \hat{c} (\hat{c}). (5M)

(4x + cy + 2z)k is irrotational. Hence find the sedan power
$$(4x + cy + 2z)k$$
 is irrotational. Hence find the sedan power $(5M)$
(b) If $\vec{F} = x^2\hat{\imath} + xz\hat{\jmath} + yz\hat{k}$ and $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, find $div(\vec{F} \times \vec{r})$ and $curl(\vec{F} \times \vec{r})$. (5M)

Find the values of the constants a, b, c so that the D.D. of $\phi = axy^2 + byz + cz^2x^3$ at (1, 2, -1) has a maximum magnitude 64 in the direction parallel to z-axis.

Q.7 (a) Prove that
$$\operatorname{sech}^{-1}(\sin \theta) = \log(\cot \theta/2)$$
. (5M)

(a) Prove that
$$\operatorname{sech}^{-1}(\sin \theta) = \log(\cot \theta/2)$$
. (5M)
(b) Find the principal value of $(1+i)^{1-i}$. (5M)

(c) Prove that
$$2f(r) = f'(r)\left(\frac{\vec{r}}{r}\right)$$
 and hence, find f if $2f = 2r^4\vec{r}$.