SVKM's NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme: B. Tech (IT/COMPUTER/ MECHANICAL/

Year: II Semester: III

MECHATRONICS/CIVIL/EXTC/ELECTRICAL)

Academic Year: 2019-20

Subject: Engineering Mathematics - III

Marks: 70 /

Date: 05 November 2019

Time: 2.00 pm - 5.00 pm

(4)

Durations: 3 (hrs) No. of Pages: 🖇

Re-Examination (2016-17/2017-18)

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

- 1) Question No. 1 is compulsory.
- 2) Out of remaining questions, attempt any 4 questions.
- 3) In all ___5_ questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right hand side indicate full marks.
- 7) Assume suitable data if necessary.

Q1) a) Find the Laplace transform of f(t),
$$f(t) = \begin{cases} (t-2)^2 & t > 2 \\ 0 & 0 < t \le 2 \end{cases}$$
 (4)

b) If A=
$$\begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$
 then calculate the eigen value of $3A^3 + 5A^2 - 6A + 2I$

c) Obtain the Fourier series for
$$f(x) = x$$
 in the interval $(0, 2\pi)$

d) Evaluate
$$L^{-1}\left[\frac{2s+2}{s^2+2s+10}\right]$$
 (3)

$$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I \text{ where } A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}.$$

b) Obtain
$$A^{50}$$
, where $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. (5)

	Гх _6 2 T	(4)
	c) Check whether $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is diagonalizable, If yes then find the transforming	
	2 -4 3	
	matrix P and the diagonal matrix D .	
Q3)	a) If f(t) is periodic with period 2a then find the Laplace transform of	(5)
	$\int \frac{t}{t}$ $0 < t < a$	
	$f(t) = \begin{cases} \frac{t}{a} & 0 < t < a \\ \frac{1}{a}(2a - t) & a \le t < 2a \end{cases}$	
	$\left \frac{1}{a} (2a - t) \right a \le t < 2a$	# # # # # # # # # # # # # # # # # # #
	s^2	(5)
	b)Obtain $L^{-1} \left[\frac{s^2}{(s^2 + 1)(s^2 + 4^2)} \right]$.	(4)
	c) Evaluate $\int_{0}^{\infty} e^{-\sqrt{2}t} \left[\frac{\sin t \sinh t}{t} \right] dt$.	(4)
Q4)		(5)
()	a) Solve $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$, given that $y(0) = 0$, $y'(0) = 1$.	(5)
*7	1 NV $= C_{\text{max}}$ between to find the inverse of $\frac{(s+2)^2}{s}$	(5)
	b)Use Convolution to find the inverse of $\frac{(s+2)^2}{(s^2+4s+8)^2}$.	
	c)Evaluate $L\{t^4H(t-2)+t^2\delta(t-2)\}$.	(4)
Q5)		(5)
	a) Express $f(x) = 2$ $-2 < x < 0$ = x $0 < x < 2$ in the form of Fourier series.	
		(5)
	b) Evaluate $\left\{\int\limits_{0}^{\infty}e^{-2t}\left(\frac{\sinh t}{t}\right)dt\right\}$.	<i>(</i> 1)
	c) Find the inverse Laplace transform of $\left[\frac{e^{-\pi s}}{s^2(s^2+1)}\right]$.	(4)
		(5)
Q6)	a) Obtain half range sine series for $f(x) = e^x$, $0 < x < 1$	(5)
	b) Find the Fourier series expansion of $f(x) = x $ in the interval (-2,2)	(4)
	c) Show that the set of functions $\cos nx$ is orthogonal on $(0,2\pi)$. Write the orthonormal set.	(7)
Q7)	a) Using Fourier series for $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in $0 < x < 2\pi$.	
	Prove that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$	
	b) Reduce the quadratic form $6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 + 4x_3x_1 - 2x_2x_3$ to canonical form	(7)
	b) Reduce the quadratic form $6x_1 + 5x_2 + 5x_3 - 4x_1x_2 + 4x_3x_1 - 2x_2x_3$ to eathern through orthogonal transformations.	

(4)